Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Journal of clinical medicine ; 12(5), 2023.
Article in English | EuropePMC | ID: covidwho-2267970

ABSTRACT

During acute respiratory distress syndrome (ARDS), the increase in pulmonary vascular permeability and lung water induced by pulmonary inflammation may be related to altered lung compliance. A better understanding of the interactions between respiratory mechanics variables and lung water or capillary permeability would allow a more personalized monitoring and adaptation of therapies for patients with ARDS. Therefore, our main objective was to investigate the relationship between extravascular lung water (EVLW) and/or pulmonary vascular permeability index (PVPI) and respiratory mechanic variables in patients with COVID-19-induced ARDS. This is a retrospective observational study from prospectively collected data in a cohort of 107 critically ill patients with COVID-19-induced ARDS from March 2020 to May 2021. We analyzed relationships between variables using repeated measurements correlations. We found no clinically relevant correlations between EVLW and the respiratory mechanics variables (driving pressure (correlation coefficient [CI 95%]: 0.017 [−0.064;0.098]), plateau pressure (0.123 [0.043;0.202]), respiratory system compliance (−0.003 [−0.084;0.079]) or positive end-expiratory pressure (0.203 [0.126;0.278])). Similarly, there were no relevant correlations between PVPI and these same respiratory mechanics variables (0.051 [−0.131;0.035], 0.059 [−0.022;0.140], 0.072 [−0.090;0.153] and 0.22 [0.141;0.293], respectively). In a cohort of patients with COVID-19-induced ARDS, EVLW and PVPI values are independent from respiratory system compliance and driving pressure. Optimal monitoring of these patients should combine both respiratory and TPTD variables.

2.
J Clin Med ; 12(5)2023 Mar 03.
Article in English | MEDLINE | ID: covidwho-2267971

ABSTRACT

During acute respiratory distress syndrome (ARDS), the increase in pulmonary vascular permeability and lung water induced by pulmonary inflammation may be related to altered lung compliance. A better understanding of the interactions between respiratory mechanics variables and lung water or capillary permeability would allow a more personalized monitoring and adaptation of therapies for patients with ARDS. Therefore, our main objective was to investigate the relationship between extravascular lung water (EVLW) and/or pulmonary vascular permeability index (PVPI) and respiratory mechanic variables in patients with COVID-19-induced ARDS. This is a retrospective observational study from prospectively collected data in a cohort of 107 critically ill patients with COVID-19-induced ARDS from March 2020 to May 2021. We analyzed relationships between variables using repeated measurements correlations. We found no clinically relevant correlations between EVLW and the respiratory mechanics variables (driving pressure (correlation coefficient [CI 95%]: 0.017 [-0.064; 0.098]), plateau pressure (0.123 [0.043; 0.202]), respiratory system compliance (-0.003 [-0.084; 0.079]) or positive end-expiratory pressure (0.203 [0.126; 0.278])). Similarly, there were no relevant correlations between PVPI and these same respiratory mechanics variables (0.051 [-0.131; 0.035], 0.059 [-0.022; 0.140], 0.072 [-0.090; 0.153] and 0.22 [0.141; 0.293], respectively). In a cohort of patients with COVID-19-induced ARDS, EVLW and PVPI values are independent from respiratory system compliance and driving pressure. Optimal monitoring of these patients should combine both respiratory and TPTD variables.

3.
Crit Care ; 26(1): 219, 2022 07 18.
Article in English | MEDLINE | ID: covidwho-2281130

ABSTRACT

BACKGROUND: Prone position is frequently used in patients with acute respiratory distress syndrome (ARDS), especially during the Coronavirus disease 2019 pandemic. Our study investigated the ability of pulse pressure variation (PPV) and its changes during a tidal volume challenge (TVC) to assess preload responsiveness in ARDS patients under prone position. METHODS: This was a prospective study conducted in a 25-bed intensive care unit at a university hospital. We included patients with ARDS under prone position, ventilated with 6 mL/kg tidal volume and monitored by a transpulmonary thermodilution device. We measured PPV and its changes during a TVC (ΔPPV TVC6-8) after increasing the tidal volume from 6 to 8 mL/kg for one minute. Changes in cardiac index (CI) during a Trendelenburg maneuver (ΔCITREND) and during end-expiratory occlusion (EEO) at 8 mL/kg tidal volume (ΔCI EEO8) were recorded. Preload responsiveness was defined by both ΔCITREND ≥ 8% and ΔCI EEO8 ≥ 5%. Preload unresponsiveness was defined by both ΔCITREND < 8% and ΔCI EEO8 < 5%. RESULTS: Eighty-four sets of measurements were analyzed in 58 patients. Before prone positioning, the ratio of partial pressure of arterial oxygen to fraction of inspired oxygen was 104 ± 27 mmHg. At the inclusion time, patients were under prone position for 11 (2-14) hours. Norepinephrine was administered in 83% of cases with a dose of 0.25 (0.15-0.42) µg/kg/min. The positive end-expiratory pressure was 14 (11-16) cmH2O. The driving pressure was 12 (10-17) cmH2O, and the respiratory system compliance was 32 (22-40) mL/cmH2O. Preload responsiveness was detected in 42 cases. An absolute change in PPV ≥ 3.5% during a TVC assessed preload responsiveness with an area under the receiver operating characteristics (AUROC) curve of 0.94 ± 0.03 (sensitivity: 98%, specificity: 86%) better than that of baseline PPV (0.85 ± 0.05; p = 0.047). In the 56 cases where baseline PPV was inconclusive (≥ 4% and < 11%), ΔPPV TVC6-8 ≥ 3.5% still enabled to reliably assess preload responsiveness (AUROC: 0.91 ± 0.05, sensitivity: 97%, specificity: 81%; p < 0.01 vs. baseline PPV). CONCLUSION: In patients with ARDS under low tidal volume ventilation during prone position, the changes in PPV during a TVC can reliably assess preload responsiveness without the need for cardiac output measurements. TRIAL REGISTRATION: ClinicalTrials.gov (NCT04457739). Registered 30 June 2020 -Retrospectively registered, https://clinicaltrials.gov/ct2/show/record/NCT04457739.


Subject(s)
Prone Position , Respiration, Artificial , Respiratory Distress Syndrome , Tidal Volume , COVID-19/epidemiology , Humans , Pandemics , Prone Position/physiology , Prospective Studies , Respiration, Artificial/methods , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Tidal Volume/physiology , Treatment Outcome
4.
Am J Respir Crit Care Med ; 206(3): 281-294, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1832818

ABSTRACT

Rationale: Whether patients with coronavirus disease (COVID-19) may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. Objectives: To estimate the effect of ECMO on 90-day mortality versus IMV only. Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO versus no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 < 80 or PaCO2 ⩾ 60 mm Hg). We controlled for confounding using a multivariable Cox model on the basis of predefined variables. Measurements and Main Results: A total of 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability on Day 7 from the onset of eligibility criteria (87% vs. 83%; risk difference, 4%; 95% confidence interval, 0-9%), which decreased during follow-up (survival on Day 90: 63% vs. 65%; risk difference, -2%; 95% confidence interval, -10 to 5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand and when initiated within the first 4 days of IMV and in patients who are profoundly hypoxemic. Conclusions: In an emulated trial on the basis of a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and regions with ECMO capacities specifically organized to handle high demand.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Adult , COVID-19/complications , COVID-19/therapy , Cohort Studies , Humans , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Retrospective Studies , Treatment Outcome
11.
Middle East respiratory syndrome Severe acute respiratory syndrome coronavirus 2 anorexia artificial ventilation bronchoscopy computer assisted tomography coronavirus disease 2019 coughing diagnostic accuracy dyspnea editorial fever hospitalization huma ; 2020(Minerva Pneumologica)
Article in English | WHO COVID | ID: covidwho-630094
SELECTION OF CITATIONS
SEARCH DETAIL